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An image is often modeled as a product of two principal components: illumination 

and reflectance components. The former is related to the amount of light incident on the 
scene and the latter is associated with the scene characteristics. The images formed from 
the two components are referred to as the illumination and the reflectance images; both 
are called the intrinsic images of the original image. The illumination components of the 
images of a fixed scene vary from image to image, while the reflectance components of 
the images in principle remain constant. Both reflectance and illumination images have 
their own applications. Intrinsic image extraction has long been an important task for 
computer vision applications. However, this task is not at all simple because it is an ill- 
conditioned problem. The proposed approach convolves an input image with a pre-
scribed set of derivative filters. The pixels of the derivative images are next classified as 
being reflectance or illumination according to three measures: chromatic, intensity con-
trast and edge sharpness, which are calculated in advance for each pixel from the input 
image. Finally, a de-convolution process is applied to the classified derivative images to 
obtain the intrinsic images. The results reveal the feasibility of the proposed technique in 
both rapidly and effectively decomposing intrinsic images from one single image. 
 
Keywords: reflectance and illumination components, intrinsic images, intensity contrast 
and edge sharpness measures, photometric reflectance model, chromatic measurement 
 
 

1. INTRODUCTION 
 

The intensity of an image reveals the brightness of a scene, which in turn is deter-
mined by two major factors, one associated with the amount of light incident on the 
scene and the other related to the reflectance of the scene. As a consequence, an image is 
often modeled as a product of two comp onents: illumination and reflectance components 
[10, 25, 29], which correspond to the two factors, respectively. The images formed from 
these two components are referred to as the illumination image and the reflectance image, 
and are jointly called the intrinsic images [2, 12, 19, 24] of the original image. 

In many computer vision applications, it is desirable that the reflectance and illumi-
nation components be decomposed from the input image. Both components have their 
own advantages. Since the reflectance component is related to the scene characteristic, 
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the reflectance image in principle remains constant under different illumination condi-
tions. For applications such as object recognition [4], pattern classification [18], scene 
interpretation [8], and visual surveillance [20, 27], it is preferable to use reflectance im-
ages. The illumination component varying with different lighting conditions can be used 
for tasks such as illumination assessment [7, 13], shading analysis [3, 14, 21], color con-
stancy [11], and geometric modeling [22]. 

Decomposing an image into its reflectance and illumination components is an 
ill-posed problem [2]. There are two unknowns (illumination and reflectance components) 
that are to be derived from one given data (the input image). Additional information is 
needed to separate the components. Weiss [28] used multiple images. Let Ii (i = 1, …, n) 
be a set of images taken of a scene under different illumination conditions. Since the re-
flectance component is assumed to be constant, say R, a set of n equations, Ii = R × Li (i = 
1, …, n), can be constructed, where Li is the illumination component of image Ii. How-
ever, this set of n equations is still not enough to solve for the n + 1 unknowns (R and Li). 
Weiss further introduced a sparseness assumption [23], which states that the filtered im-
ages obtained by applying gradient operators to the input images are sparse (i.e., they 
contain mostly zeros) so that the histograms of the filtered images can be fitted with a 
Laplacian function. With this assumption, the decomposition problem becomes solvable. 
Weiss then estimated R and Li using a maximum likelihood technique. Yuille et al. [29] 
also used as the input data a set of images taken of an object under different and un-
known lighting conditions. A singular value decomposition technique was applied to the 
images to separate the images into components depending on surface characteristics 
(geometry and albedo) and illumination conditions. Based on the extracted surface char-
acteristics, a generative model of the object [15], which approximates the object’s ap-
pearance under a restricted range of illumination conditions, was determined. 

Since multiple images were used, the applicability of their techniques is somewhat 
limited. Tappen et al. [26] proposed a method for recovering intrinsic components from a 
single image. A set of derivative filters are first applied to the input image giving rise to a 
set of derivative images. The pixels of the derivative images are classified as being re-
flectance or illumination based on their color and intensity. However, unsatisfactory re-
sults were observed. Tappen introduced a process, called the generalized belief propaga-
tion process, to improve the results. Next, a de-convolution process was applied to the 
classified derivative images to obtain the intrinsic images of the input image. The Tappen 
method took about six minutes to categorize pixels and another six minutes to perform 
the generalized belief propagation process. To use with real-time applications, the time 
complexity of the Tappen method should be significantly reduced. 

Recently, Matsushita et al. [20] introduced an illumination eigenspace into Tap-
pen’s computational framework. The eigenspace, which is built in advance, provides 
information for categorizing the pixels of derivative images. Since no information is 
computed during pixel classification, the Matsushita approach can operate in real time. 
However, over a period of 120 days Matsushita collected a set of 2048 images from a 
scene for generating its illumination eigenspace. Apparently, Matsushita’s method can 
not be applied to time-varying scenes (i.e., dynamic scenes). To be applicable to dynamic 
scenes, the information for classifying pixels of derivative images must be computed 
directly from the input image, and for real-time applications, the computation should be 
efficient. In [17], the normalized RGB color space is used as the chromaticity to produce 
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weighted edge maps to classify the edges of the input image. However; the evidence from 
such simple chromaticity is not reliable in many conditions. In addition, an illumination- 
invariant image is used to recover intrinsic images in [9].  

Both information selection and classification strategy play critical roles in deter-
mining the goodness of classification results, which in turn determines the robustness of 
the proposed intrinsic image decomposition method. In this study, three measures (chro-
matic, intensity contrast and edge sharpness) and a hierarchical classification strategy are 
proposed for classifying the pixels of derivative images. The details of the overall proc-
ess of intrinsic image decomposition are given in section 2. Section 3 is devoted to a dis-
cussion of invariant chromatic characteristics that are used to define the chromatic meas-
ure. Experimental results are presented in section 4 and concluding remarks and future 
work in sections 5.  

 
Fig. 1. Proposed flowchart for extracting intrinsic images from a single image. 

2. INTRINSIC IMAGE DECOMPOSITION 

Fig. 1 shows a flowchart for the proposed approach to extracting intrinsic images 
from a single color image. The approach consists of four major stages: logarithmic edge 
generation, characteristic measure calculation, edge classification, and intrinsic image 
formation. Let I = (Ir, Ig, Ib) denote the input color image, where Ir, Ig and Ib are the red, 
green and blue components of the input image. Each color component Ii is modeled as Ii 
= Ri × Li, where Ri (reflectance) and Li (illumination) are the intrinsic images of Ii. The 
process of Fig. 1 is applied to each of the color components. The intrinsic images, R and 
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L, of the input image are finally formed from Ri and Li by R = (Rr, Rg, Rb), L = (Lr, Lg, Lb). 

2.1 Logarithmic Edge Generation 

Let Ii be any color component image. In the logarithmic edge generation stage, Ii is 
first transformed into the logarithmic domain, 

Ii′ = logIi = log(Ri × Li) = logRi + logLi = Ri′ + Li′,    (1) 

resulting in an additive composition of reflectance and illumination. This also reduces the 
dynamic range of Ii so as to increase its intensity contrast. The transformed image Ii′ is 
next convolved with a horizontal derivative filter fh and a vertical derivative filter fv, re-
sulting in two derivative component images I i

h
′ and I i

v
′. In this study, the Prewitt deriva-

tive filters are utilized. From the derivative component images, an edge map Ei of size r 
× c is generated, which is the same as the image size. Each element e of map Ei contains 
a derivative magnitude mi(e) and a derivative orientation oi(e), where 

2 2 1/2 1( ) ( ( ) ( ))  and ( ) tan ( ( ) ( )).i i i i i i
h v h vm e I e I e o e I e I e−′ ′ ′ ′= + = +    (2) 

2.2 Characteristic Measure Calculation 

In the second stage of characteristic measure calculation, three measures, chromatic, 
intensity contrast and edge sharpness, are calculated for each image pixel. The calculated 
measures will be used in the next stage for classifying the pixels of derivative component 
images into illumination or reflectance edge pixels. In the following, pixels are temporar-
ily treated as edge pixels when calculating their characteristic measures. 

2.2.1 Chromatic measure, A 

Consider a pixel p and let wp be a neighborhood window centered at p. We look for 
a straight line l passing through p within wp. The line is formed from the pixels whose 
sum of derivative magnitudes is maximal. This line divides wp into two regions, say w1 
and w2. To calculate the chromatic measure of p, for each pair of pixels (pi, pj) in w1 and 
w2, the correlation cij of the chromatic characteristic (given in section 3) between the 
two pixels pi and pj is calculated. Let Ci and Cj be the vectors formed from the chro-
matic characteristics of pixels pi and pj, respectively. The chromatic correlation cij be-
tween pi and pj is calculated by cij = Ci ⋅ Cj/(||Ci||||Cj||). Let {cij} be the set of chromatic 
correlations of all pairs of pixels from the regions w1 and w2. The chromatic measure of 
pixel p is defined as the median of {cij}. The resulting array of characteristic measure is 
called the chromatic measure map, and denoted by Ai. 

2.2.2 Intensity contrast measure, T 

The intensity averages, a1 and a2, of the pixels in regions w1 and w2 are computed. 
The intensity contrast measure of p is defined as |a1 − a2|/kI, where kI normalizes |a1 − a2| 
so that the intensity contrast measures are between 0 and 1. The intensity contrast meas-
ure map of the entire image is denoted by Ti

I. 
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2.2.3 Edge sharpness measure, S 
 

First, we find the line l′ perpendicular to the previously found line l. Next, along l′ 
we compute the standard deviation σi of derivative magnitudes of pixels within wp, σi(p)  
= 

2 1/21( | ( ) | ) ,i i

p
n m p m

′

′ −∑  where n is the number of pixels and im  is the mean of their  

derivative magnitudes. The edge sharpness measure of pixel p is defined as the normal-
ized product of its derivative magnitude mi and its standard deviation σ i of the derivative 
magnitudes, mi(p)σi(p)/kS, where kS normalizes the values to between 0 and 1. Clearly, 
the larger both mi(p) and σi(p) are for an edge pixel, the sharper the edge pixel will be. 
Let Si be the edge sharpness measure map, which contains the edge sharpness measures 
of all pixels. More details can be found in [6]. 
 
2.3 Hierarchical Edge Classification 
 

In the edge classification stage, the measures calculated in the previous stages are 
used to classify the pixels of derivative component images I i

h
′ and I i

v
′ as reflectance or 

illumination edge pixels. Fig. 2 shows the classification process for some pixel p. First, 
we inspect its derivative magnitude mi(p). If mi(p) exceeds a threshold tm, p is a potential 
edge pixel. We then examine its intensity contrast measure Ti(p). A small Ti(p) indicates 
a small difference in intensity between the two sides of p, in which case we classify p as 
a reflectance edge pixel. Refer to Fig. 3, where a polyhedron sitting on a horizontal sur-
face is illuminated by a distant light source located to the upper left of the polyhedron. A 
line FG,  which is drawn on a face of the polyhedron, does not result from an illumina-
tion gradient; it has a small intensity contrast measure and, hence, is a reflectance edge. 
Similarly, polyhedral edges AI, BC  and HC,  which are reflectance edges, all have small 
intensity contrast measures. On the other hand, if pixel p has a large intensity contrast 
measure, the pixel may be an illumination or a reflectance edge pixel. Edges AB  and 
BE  in Fig. 3 both have large intensity contrast measures. However, AB  is a reflectance 
edge because it is an object edge, while BE  is an illumination edge because it is created 
by a difference of illumination between its two sides. To determine the edge type of pixel 
p, we need an additional measure. Consider the chromatic measure Ai(p) of p. If Ai(p) is 
small, i.e., the difference between the chromatic characteristic of the two sides is large, 
pixel p is classified as a reflectance edge pixel. See edge DH  in Fig. 3, which is a re-
flectance edge because it separates the polyhedron from the background.  

Most often, different objects have distinct surface characteristics and the correlation 
of their surface characteristics will be small. However, it is possible that two objects hap-
pen to have similar surface characteristics. In this case, we appeal to the sharpness meas-
ure of the edge separating the two objects. If the edge sharpness measure is large, we 
classify the edge as reflectance and otherwise as illumination. Edges AB  (a reflectance 
edge) and BE  (an illumination edge) in Fig. 3 both have large intensity contrast meas-
ures and large chromatic measures. Based on these two measures, we will not be able to 
determine their edge types. But, if its edge sharpness measure is large, we will classify an 
edge as reflectance, and otherwise as illumination.  

The above edge classification process can successfully interpret the edge types of all 
the line segments in Fig. 3. However, in reality various complicated situations may  
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 Fig. 2. Hierarchical edge classification process. 

 
Fig. 3. Example for illustrating edge classification. 

occur, such as specularities, inter-reflections, and scenes that are too bright or too dark. 
These can result in indeterminate or numerically unreliable values for characteristic meas-
ures. Therefore, we restrict ourselves to outdoor scenes during daytime and scenes with-
out very high or very low brightness. Note that outdoor scenes provide ample fields of 
view for cameras so that the portion of specularities is very small relative to the entire 
scene.  

During the classification process, some pixels have not been classified. For these 
pixels, we introduce an evidence following process which incrementally determines their 
edge types through progressive propagations of local evidence. Let Gi be the array, called 
the classification map, which contains the classification results of all pixels. Let e be 
some element of the map whose edge type has not yet been determined. Examining edge 
map Ei, let mi(e) and oi(e) be the derivative magnitude and derivative orientation of e. We 
check its two adjacent neighbors, say n1 and n2, in the direction oi(e) and select the one 
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with the larger derivative magnitude. If the edge type of the selected neighbor has been 
decided, we set Gi(e) to the edge type of that neighbor,  

1 2
( )

( ) arg (max{ ( ), ( )}).
i

i

i i i

G n
G e m n m n=     (3) 

However, if the neighbor has not yet been classified, we continue to the next undeter-
mined element of Gi. The above process is repeated until all elements of Gi are classified. 
This completes the evidence following. After this, every element of Gi contains a symbol, 
either sR or sI, which denote reflectance- and illumination edge types, respectively.  

The classification maps, Gi (i = r, g, b), obtained from different color components 
may not be mutually consistent. We say a pixel is ambiguous if it has different edge types 
in the three classification maps. For such a pixel, we use a vote to decide a unique edge 
type for the pixel. Let p be such an ambiguous pixel. We add up its derivative magni-
tudes to obtain sums SR(p) and SI(p) according to the edge types of the pixel determined in  
the classification maps, i.e., 

, , ( )
( ) ( )

i
R

i
R

i r g b G p S
S p m p

= =
= ∑ ∑  and  

, , ( )
( ) ( ).

i
I

i
I

i r g b G p S
S p m p

= =
= ∑ ∑   

We then decide the edge type of p in map G by 
,

( ) arg (max{ ( ), ( )}).
R I

R I
S S

G p S p S p=  For  

non-ambiguous pixels, we simply copy their edge types to map G. 
Based on the resultant classification map MG, we generate reflectance R i

h, R i
v and 

illumination Li
h, L

i
v derivative component images from derivative component images I i

h
′ 

and I i
v
′. For a pixel p, 

if G(p) = sR, then ' '( ) ( ), ( ) ( )i i i i
h h v vR p I p R p I p= =  and ( ) 0, ( ) 0;i i

h vL p L p= =   (4) 
if G(p) = sI, then ( ) 0, ( ) 0i i

h vR p R p= =  and ' '( ) ( ), ( ) ( ).i i i i
h h v vL p I p L p I p= =  

This step separates derivative component images as reflectance or illumination, and  
R i

h, R i
v, R i

h, and Li
v are called the intrinsic derivative component images. 

 
2.4 Intrinsic Image Formation 
 

At the final stage of intrinsic image formation, de-convolution [28] is applied to the 
intrinsic derivative component images, from which the logarithmic reflectance Ri′ and 
illumination Li′ component images are computed,   

,
*( * ),i r i

j j
j h v

R g f R
=

′ = ∑
,

* ( * ),i r i
j j

j h v
L g f L

=

′ = ∑     (5) 

where fj
r is the reversed function of fj defined as fj

r(p) = fj(− p). The symbol * denotes 
discrete convolution, and g is a normalization term satisfying 

,
( ) ,r

j j
j h v

g f f δ
=

∗ ∗ =∑     (6) 

where δ is the Kronecker delta function. To compute Ri′, we convolve both sides of Eq. 
(5) with 

,
,r

j j
j h v

f f
=

∗∑  and get 
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, ,
( ) * .r i r i

j j j j
j h v j h v

f f R f R
= =

′∗ ∗ =∑ ∑  

Applying the Fourier transform ℑ to the above equation, 

, ,
(( ) ) ( * ).r i r i

j j j j
j h v j h v

f f R f R
= =

′ℑ ∗ ∗ = ℑ∑ ∑     (7) 

By the convolution theorem, 1

, ,
( ( * ) / ( )),i r i r

j j j j
j h v j h v

R f R f f−

= =

′ = ℑ ℑ ℑ ∗∑ ∑  where ℑ-1 is the  
inverse Fourier transform. Likewise, 

1

, ,
( ( * ) / ( )).i r i r

j j j j
j h v j h v

L f L f f−

= =

′ = ℑ ℑ ℑ ∗∑ ∑     (8) 

Finally, we apply the exponential transform to the logarithmic intrinsic component 
images Ri′ and Li′. The reflectance Ri and illumination Li component images of the color 
component image Ii are obtained by Ri = exp(Ri′) and Li = exp(Li′). After obtaining the 
intrinsic component images of the (r, g, b) three color component images, Ri and Li, the 
intrinsic images, R and L, are formed from R = (Rr, Rg, Rb), L = (Lr, Lg, Lb). 

3. CHROMATIC CHARACTERISTICS 

For calculating chromatic measures of image pixels, we need to know the chromatic 
characteristics of pixels in advance. Many chromatic characteristics that are invariant to 
scene geometry and incident illumination have been proposed in the literature [1, 16]. In 
this study, four groups of chromatic characteristics, denoted by H, C, W and N, which can 
be efficiently calculated from the input image, are considered. 

Rather than using all the invariant chromatic characteristics suggested by Geuse-
broek [16], eleven chromatic characteristics, H, Hp, C, Cλ, Cp, Cλp, W, Wλ, Wλλ, N, and Nλ, 
are adopted for this study. They are given below and in Eq. (9),  

22
2 2

22
2

2 2
2

2 2

2 2

2
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i
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22
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2 2
, where .i i i i

i
E E E E E E E E E E

N
E

λλ λλ λ λ λ− − +
= 

         (9) 

Each characteristic can be invariant only under certain imaging conditions. Five 
imaging conditions are considered in this study, uniform illumination, equal energy spec-
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trum, colored illumination, matte, dull surfaces, and uniformly colored surfaces. The first 
three conditions are related to illumination, and the remaining two are related to object 
surfaces. Since general scenes are considered in this study, the objects constituting a 
scene can not be known a priori. The imaging conditions concerning object surfaces be-
come impractical and so do the chromatic characteristics, whose invariance properties 
are subject to the conditions. In the following, we concentrate on the illumination condi-
tions and the associated chromatic characteristics. Instead of directly considering the three 
illumination conditions, we turn to three fundamental lighting sources: diffuse, ambient, 
and direct lightings. Any illumination condition can be approximated as a combination of 
the three. Diffuse lighting comes from the lights reflected off environmental objects. Am-
bient lighting results from surrounding light sources. Direct lighting comes from a single 
intense light source. There are more than 300 color images in the database [33], which 
were taken of 100 objects under the three lighting conditions. Objects were made of vari-
ous kinds of materials. We used it to study the properties of chromatic characteristics. 

Let I1, I2 and I3 be the images of the same scene S taken under diffuse, ambient and 
direct lighting conditions, respectively. Let C specify any of the above chromatic charac-
teristic and C1(p), C2(p) and C3(p) represent the values of the chromatic characteristic at 
pixel p for the three images, respectively. Ideally, C1(p) = C2(p) = C3(p), indicating that 
the chromatic characteristics of the same material are invariant under different lighting 
conditions. Let σC(p)denote the standard deviation of C1(p), C2(p) and C3(p), i.e.,  

3 3
2 1/ 2

1 1

1 1( ) [ ( ( ) ( )) ] , where ( ) ( ).
2 3C i i

i i
C C C Cσ

= =
= − =∑ ∑p p p  p p     (10) 

We define the degree of invariance of chromatic characteristic C for scene S as 

( ) ,
( )C

C

n
S

ε σ
=

+∑
p

p
p

A     (11) 

where np is the number of image pixels and ε is a small positive number to prevent the 
denominator from being zero.  

From our previous observations result [5], we select chromatic characteristics H, C, 
Cλ for the experiments of intrinsic image extraction. 

4. EXPERIMENTAL RESULTS 

In the previous section, a number of chromatic characteristics were introduced for 
calculating chromatic measures of image pixels. The chromatic measure together with 
the other two measures of intensity contrast and edge sharpness was used to classify the 
pixels of derivative images into reflectance or illumination edge pixels. The intensity 
contrast and edge sharpness measures are calculated from intensity values and edge 
magnitudes, respectively. Compared with chromatic characteristics, intensity values and 
edge magnitudes are relatively reliable because the calculation of chromatic characteris-
tics involves a number of uncertainties. First, approximate imaging, photometric reflec-
tance, and chromatic measurement models were adopted for calculating chromatic char-
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acteristics. Second, high-order spatial and spectral derivatives were involved in the cal-
culation of chromatic characteristics. Third, the invariance properties of chromatic char-
acteristics depend on imaging conditions. Each input image is an RGB color image with 
a size of 320 by 240 pixels. The output results include a reflectance image and an illu-
mination image extracted from the input image. The source code was written in C++ run 
on a 2.4 GHz Pentium based PC. The program took about 3 to 4 seconds to decompose 
an input image into its reflectance and illumination images. 

Fig. 4 shows three examples of real scenes. The brightness of the reflectance images 
is lower than that of the input images due to the lack of illumination component in the 
reflectance images. Also, almost all of the shadows present in the input images were suc-
cessfully removed from the reflectance images and were assigned to the illumination im-
ages. Since shadows often confuse visual systems, reflectance images are useful for ap-
plications such as pattern recognition, object classification, scene interpretation, and vis-
ual surveillance. On the other hand, illumination images are also useful for such objec-
tives as illumination assessment, shading analysis, color constancy, and object modeling.  

 

 
(a) Input images.      (b) Reflectance images.   (c) Illumination images. 

Fig. 4. Examples using real scenes: column (a) to (c). 
 

Fig. 5 shows more examples of real scenes. Some details, e.g., the characters in-
scribed on the wall, the left eye of the statue, and the texture on the small ball, all of which 
are vague due to shadows, become perceptible after removing the shadows (see the re-
flectance images in the second column of this figure). However, unlike in the reflectance 
images in Fig. 4 the shadows in Fig. 5 remained shallow yet visible. Although it is possi-
ble to eliminate the shadows with the aid of illumination images, we haven’t thus far 
developed a process that could be general enough to apply to all kinds of images. 

In the last example in the third row of Fig. 5, there are several blurred areas along the 
boundaries of the shadow in the illumination image. These areas resulted from errors in 
the classification of pixels of the derivative image. Recall that our edge classification proc-
ess categorizes a pixel of a derivative image as being either reflectance or illumination.  
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(a) Input images.       (b) Reflectance images.   (c) Illumination images. 

Fig. 5. Examples using real scenes.  

 
However, in reality an edge pixel can be both reflectance and illumination; see for exam-
ple the input image. The boundaries between long wooden plates are reflectance, while 
the boundaries created by the shadow are illumination. The pixels located at the intersec-
tions between the aforementioned two kinds of boundaries are both reflectance and illu-
mination. Our classification process cannot identify the edge types of those pixels. 
Moreover, the classification errors are propagated in the course of deconvolution, which 
causes blurred areas in the illumination image.  

Fig. 6 shows an example of the importance of edge classification. Fig. 6 (b) presents 
the result, in which the bright pixels indicate the illumination edge pixels determined by 
the classification process. There are several broken segments originating from erroneous 
classifications of the shadow boundary of the person, especially near his legs. The seg-
ments result in blurred areas in the illumination image (Fig. 6 (c)). Figs. 6 (d) and (e) 
show an improved edge classification map using an edge following technique and the 
associated illumination image, respectively. Several blurred areas in the original illumi-
nation image of Fig. 6 (c) were restored in the illumination image of Fig. 6 (e).  

The above example demonstrates the importance of edge classification. It is also 
possible to improve the results by applying noise removal to the classification map. Fig. 
7 shows the results before and after noise removal. Figs. 7 (b)-(d) shows the edge classi-
fication map, the extracted reflectance and illumination images before noise removal, and 
Figs. 7 (e)-(g) are the results after noise removal. The reflectance image of Fig. 7 (f) con-
tains more reflectance details (both albedo and structure) than that of Fig. 7 (c). However, 
noise removal may get rid of important clues as well, as can be seen in the illumination 
image of Fig. 7 (g), in which the shadows of the flowerpot and plants are faded out. In 
addition, our result is very similar to Fig. 7 (h) [9] but much faster. 
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 (a) Input image. (b) Edge classifi-

cation map. 
(c) Illumination 

image. 
(d) Improved edge 

classification map.
(e) Improved illumi- 

nation image. 
Fig. 6. The importance of edge classification. 

 

    
(a) Input image.    (b) Edge classification map. (c) Reflectance image.   (d) Illumination image. 

    
(e) Edge classification map 

after noise removal. 
(f) Resulting reflectance 

image. 
(g) Illumination image. (h) Result from [12]. 

 
Fig. 7. Modify the edge classification result by noise removal. 

5. CONCLUDING REMARKS 

In this paper, an approach to extracting intrinsic images from one single image is 
presented. Three measures: chromatic, intensity contrast and edge sharpness, which are 
efficiently calculated from the input image by providing the (R, G, B) values of each pixel, 
were employed to classify the pixels of derivative images into reflectance or illumination 
edge pixels. The performance of the proposed approach depends on the goodness of the 
classification result. In order to improve the classification result, we used a noise removal 
method and an edge following technique to link broken edges. However, these methods 
are post-processing. We prefer pre-processing methods, such as increasing the robustness 
and reliability of the current measures and investigating into new ones.  

The proposed approach extracts intrinsic images from a single image so that the ap-
proach can be applied to images of dynamic scenes. Our method takes about 3 to 4 sec-
onds to complete the intrinsic image decomposition of an image. Compared with the pre-
vious methods, the time complexity of the proposed approach has been greatly improved. 
However, for real-time applications the processing time would be need to further reduced. 
The edge classification and the intrinsic image formation steps together took about 70% 
of the entire processing time. Note that there is an evidence following process that is it-
erative in nature in the edge classification step and that the deconvolution process in the 
intrinsic image formation step performs an FFT seven times, each taking about 0.1 to 
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0.15 seconds. We will concentrate on reducing the processing times of the aforemen-
tioned time-consuming processes in our future work.    
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